ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по Химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.

 
Всё о Химии - Ximia.org

МЕМБРАННЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ МЕТАБОЛИЗМА

Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липидное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физико-химические свойства: упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее большинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое: димеры (Са2+-АТФаза), тетрамеры (Na+/K+-АТФаза) или даже более высокоорганизованные надмолекулярные комплексы.

Примером таких комплексов являются сложные мембранные структуры, включающие рецепторы и преобразователи сигналов, действие которых начинается с восприятия внешнего импульса (первичного посредника) на внешней стороне клеточной мембраны и завершается образованием вторичного посредника на внутренней стороне мембраны. Рассмотрим передачу и трансформацию сигнала от первичного посредника, роль которого, как правило, выполняют разнообразные гормоны, не проникающие через клеточную мембрану (см. главу 8).

Первичный посредник взаимодействует с соответствующим рецептором, что приводит к изменению конформации последнего и, как следствие, к увеличению латеральной подвижности в мембране. Это повышает вероятность взаимодействия активированного рецептора с преобразователем (роль преобразователей выполняют специфические мембраносвязанные белки, содержащие ГТФ в связанном состоянии,– G-белки, или ГТФ-связы-вающие белки) [Авдонин П.В., Ткачук В.А., 1994].

G-белки – центральная часть регуляторного мембранного ансамбля, представлены сложным олигомерным комплексом. Они относятся к гетеро-тримерным протеолипидам, состоящим из α-, β- и γ-субъединиц. β-субъединица комплекса тесно ассоциирована с α- и γ-субъединицами. Последние модифицированы жирнокислотными радикалами – миристоильным радикалом в случае α-субъединицы (присоединен через остаток глутаминовой кислоты) и геранильным радикалом в случае γ-субъединицы (присоединен к радикалу цистеина). Такая модификация прочно ассоциирует G-белки с мембранным бислоем. Следовательно, регуляторные белки функционируют в тесной связи с мембраной, и их свойства зависят от физико-химических характеристик мембраны.

Рис. 9.11. Трансмембранная передача информации с участием аденилатциклазы (АС) и ГТФ-связывающих белков.

GS - стимулирующий и Gi - ингибирующий ГТФ-связывающие белки; RSи Ri - соответствующие рецепторы для GSи Gi. Показаны участки активации сигнала форскалином, теофиллином и кофеином, а также ингибирования холерным и коклюшным токсинами.

Установлено, что нарушение взаимодействия между белковыми молекулами в олигомерном ансамбле Na++-АТФазы, происходящее, например, при ее свободнорадикальной модификации в ишемическом мозге, устраняет способность АТФ регулировать активность этого фермента.

Приведенные примеры указывают на важное биологическое значение олигомерных ассоциатов мембранных белков, состоящее в том, что при изменении физико-химических свойств мембраны соответственно изменяется и характер взаимодействия мембранных структур. Таким образом формируются обратные связи для приспособления обмена веществ к потребностям организма.

G-белки делятся на несколько типов, причем один из них выполняет стимулирующую, а остальные – ингибирующую функции. Взаимодействие соответствующего G-белка с ферментом–усилителем сигнала приводит к изменению свойств фермента и соответственно к изменению его активности. В случае циклического АМФ (рис. 9.11) возможна как активация аденилатциклазы, так и ее ингибирование (в зависимости от типа G-белков, участвующих в трансформации сигнала). Итогом будет изменение скорости синтеза цитоплазматического цАМФ – активатора протеинкиназ, регулирующих функцию клеточных белков в результате их фосфорилирования. В неактивном состоянии протеинкиназа представляет собой димер из каталитической и регуляторной субъединиц. Активация протеинкиназы обеспечивается связыванием цАМФ с регуляторной субъединицей, что вызывает диссоциацию и активацию каталитической субъединицы.

Субстратами протеинкиназ являются разнообразные белки, фосфорили-рование которых изменяет их активность. Например, активация протеин-киназы А со стороны цАМФ приводит к фосфорилированию гликогенсин-тазы и гликогенфосфорилазы. При этом активность первого фермента подавляется, а второго усиливается (см. главу 10). Таким образом, появление в кровяном русле адреналина, активирующего аденилатциклазу миоци-тов, улучшает энергетическое обеспечение сокращений сердечной мышцы.

Известно несколько типов протеинкиназ, активируемых различными эффекторами. Субстраты протеинкиназ – огромное количество белков, фос-форилирование которых приводит к изменению их активности. Более того, обнаружены протеинфосфатазы, которые, осуществляя гидролиз фосфатной группы, возвращают белковую молекулу в исходное состояние. Во многих случаях мишенью действия киназ являются другие киназы, которые фосфорилируют фосфатазы, в свою очередь регулируя их функцию. Таким образом, регуляция метаболизма имеет каскадный характер.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

 

Всё о Химии для учителей, учеников, студентов и просто химиков