ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по Химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.

 
Всё о Химии - Ximia.org

ИОН-РАДИКАЛЫ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ИОН-РАДИКАЛЫ, частицы с нсспаренным электроном и зарядом. По знаку заряда различают катион-радикалы (КР) и анион-радикалы (АР). И.-р. могут быть органическими и неорганическими.
Органические И.-р. Практически любая орг. молекула может образовывать как АР (при восстановлении), так и КР (при окислении). Относит. склонность к образованию КР или АР зависит от природы атомов, входящих в молекулу, и от особенностей ее строения. Напр., ароматич. тиоэфиры ArSCH3 дают стабильные КР ArSCH3+' и АР ArSCH3-'. Ароматич. амины преим. образуют КР ArNR2+', а ароматич. кетоны - АР Аr2СО-' (т. наз. кетилы). Устойчивость И.-р. возрастает с увеличением степени делокализации неспаренного электрона. Наличие в молекуле электронодонорных групп (OR, NR2, CR=CR2 и др.) повышает стабильность КР, акцепторных (NO2, CN, COOR, SO2R, CF3 и др.) - АР. Нек-рые соли И. р. выделены в твердом виде (см., напр., Металлы органические). В газовой фазе И. р. образуются при электронном ударе, диссоциативной ионизации (см. Маcс-спектрометрия), а также в условиях ион-циклотронного резонанса. Для жидкой фазы общий метод - электрохим. окисление или восстановление. АР получают также р-цией субстратов с сольватированным электроном или донорами электронов, в качестве к-рых используют щелочные и щел.-зем. металлы, др. орг. АР, орг. анионы и нек-рые соед. с низким потенциалом ионизации. В качестве окислителей при получении КР используют H2SO4, к-ты Льюиса (АlСl3, SbCl5 и др.), РbО2, K3[Fe(CN)6], NO+ClO4-, орг. катионы, орг. соед. с высоким сродством к электрону (хиноны, тетрацианоэтилен и др.), стабильные радикалы, напр., ароксильные, нитроксильные, гидразильные. Иногда КР получают восстановлением, напр.:
261_280-2.jpg
Образованию И.-р. при взаимод. донора и акцептора электронов предшествует перенос заряда в донорно-акцепторном комплексе, чему способствует УФ облучение. И.-р. - интермедиаты мн. р-ций; образуются из субстратов в результате одноэлектронного переноса. Для И.-р. характерны р-ции фрагментации, напр.:
261_280-3.jpg
диспропорционирования (р-ция 1) и димеризации (р-ция 2):
261_280-4.jpg
Р-ции (1) и (2) обусловлены рекомбинацией радикальных частиц, однако необходимое для этого сближение двух И.-р. затрудняется их зарядовым расталкиванием. Последнее уменьшается, если И.-р. входит в состав ионной пары. И.-р. способны вступать в гетеролитич. р-ции, в результате к-рых могут образовываться новые связи или происходить одноэлектронный перенос с регенерацией нейтральной орг. молекулы, напр.:
261_280-5.jpg
Неорганические И.-р. Наиб. известен АР кислорода 261_280-6.jpg, т. наз. супероксид-ион, входящий в состав КО2 (см. Калий) и образующийся при его диссоциации в непротоногенном р-рителе, напр., бензоле, в присут. 18-краун-6-эфира. Образуется 261_280-7.jpg также при электролизе О2 и при одноэлектронном переносе типа:
261_280-8.jpg
Супероксид устойчив в отсутствие протонов; является умеренно сильным восстановителем и очень слабым окислителем. Его окислит. способность возрастает в присут. сильных протонных к-т. Сильный нуклеофил, реагирует, напр., с ароматич. дисульфидами: 261_280-9.jpg Супероксид выступает как переносчик электрона в процессах дыхания, идущих С участием супероксиддисмутазы. Возможно, что в тканях под действием 261_280-10.jpg нек-рые прир. антибиотики дают АР, далее превращающиеся в более активные противомикробные и канцеролитич. соед. Так, напр., объясняют образование реумицина из ксантотрицина. 261_280-11.jpg получают электрохим. восстановлением СО2 при потенциале —2 В или из формиат-иона по схеме:
261_280-12.jpg
Потенциал восстановления м. б. значительно снижен при использовании в качестве катализатора комплекса Ni с 1,4,8,11-тетраазациклотетрадеканом. Возможно, что 261_280-13.jpg образуется при фотосинтезе. 261_280-14.jpg - восстановитель, напр.:
261_280-15.jpg
способен присоединяться по кратным связям:
261_280-16.jpg
Перспективное св-во 261_280-17.jpg - его способность превращаться в СО, что позволяет получать последний из СО2. 261_280-18.jpg образуется при фотолизе и термолизе р-ров персульфатов или при добавлении к ним солей переходных металлов в низких степенях окисления, напр.:
261_280-19.jpg
Наиб. эффективна смесь солей Fe2+ и Сu+. С орг. соед. 261_280-20.jpg обычно дает КР, напр., 261_280-21.jpg Атом Н при этом обычно не отщепляется. Лит.: Морковник А. С., Охлобыстин О. Ю., "Успехи химии", 1979, т. 48, в. 11, с. 1968-2006; их же, "Химия гстероцикл. соединений", 1980, № 8, с. 1011-29; Росси Р. А., де Росси Р. X., Ароматическое замещение по механизму SRN 1, пер. с англ., М., 1986; Тодрес З. В., Ион-радикалы в органическом синтезе, М., 1986; Julliard М., Chanon М., "Chem. Rev." 1983, v. 83, № 4, p. 425-506. 3. В. Тодрес.


===
Исп. литература для статьи «ИОН-РАДИКАЛЫ»: нет данных

Страница «ИОН-РАДИКАЛЫ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учителей, учеников, студентов и просто химиков