ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

НИТРОВАНИЕ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


НИТРОВАНИЕ, введение нитрогруппы —NO2 в молекулы орг. соединений. Может проходить по электроф., нуклеоф. и радикальному механизмам; активные частицы в этих р-циях-соотв. катион нитрония NO2, нитрит-ион NO2 и радикал NO2. H. может осуществляться по атомам С, N, О замещением атома водорода (прямое Н.) или др. функц. групп (заместительное Н.) либо в результате присоединения группы NO2 по кратной связи.

Электрофильное Н. Среди электроф. нитрующих агентов доминирующее положение занимает HNO3. Безводная и конц. HNO3 способны к самопротонированию: 2HNO33053-18.jpg23]+ + NO3- 3053-19.jpg2+ + NO-3 + H2O. Присутствие воды снижает концентрацию NO+2 и в 93- 95%-ной HNO3 спектрофотометрически он уже не обнаруживается. Для увеличения нитрующей активности HNO3 используют ее смеси с H2SO4 или олеумом, к-рые генерируют NO2, связывая воду:

3053-20.jpg

В безводной H2SO4 при содержании HNO3 меньше 10% равновесие полностью сдвинуто вправо. Применяют также комбинации HNO3, разл. оксидов азота и орг. нитратов с к-тами Льюиса (АlСl3, ZnCl2, BF3 и др.); сильным нитрующим действием обладает смесь HNO3 с (СН3СО)2О благодаря образованию ацетилнитрата и N2O5 (последний при содержании в смеси более 90% HNO3 полностью диссоциирует на NO+2 и NO-3); перспективны также смеси HNO3 с безводным SO3 или N2O5. Вместо HNO3 можно применять ее соли, однако в пром-сти такой метод не используют из-за осложнения процесса регенерации отработанных к-т. В случае слабой взаимной р-римости нитрующего агента и субстрата, а также для уменьшения побочных процессов Н. проводят в орг. р-рителях, напр. нитрометане, сульфолане, уксусной к-те; полярные р-рители способствуют диссоциации [H2NO3]+ и тем самым увеличивают концентрацию NO2.

В лаб. практике широко используют апротонные нитрующие агенты (нитраты, соли нитрония, полинитросоед. и др.), активность к-рых в р-циях электрофильного Н. увеличивается в ряду: AlkONO2 < (CH3)2C(CN)ONO2 < < RC(N02)3 3053-21.jpg RN(N02)2 < NO2F < CH3COONO2 < < N2O5 < NO2+X-.

Субстратами для электрофильного Н. служат ароматич. и гетероциклич. соед., олефины, относительно сильные СН-кислоты, амины, спирты.

Н. ароматич. соед. протекает по схеме:

3053-22.jpg

Возможно также образование s-комплекса, в к-ром группа NO2 связана с атомом углерода кольца, несущим заместитель (ипсо-атака). Соед. с электронодопорными заместителями более реакционноспособны и нитруются в орто- и пара-положения, а с электроноакцепторными - в мета-поло-жение. В пром-сти для Н. ароматич. соед. применяют в осн. смесь HNO3 и H2SO4 (выход нитропродуктов ~ 90-95%). Основная побочная р-ция - окисление, приводящее, как правило, к деструкции ароматич. кольца. В зависимости от реакц. способности субстрата условия Н. варьируют в широких пределах-от водной HNO3 при 0°С (обязательно присутствие оксидов азота) до дымящей HNO3 в олеуме при повыш. т-рах. При низких т-рах с высокой скоростью протекает Н. ароматич. соед. солями нитрония; при этом часто лимитирующая стадия-скорость растворения соли нитрония. Используют также заместительное Н.-замещение сульфо-, диазо- и др. функц. групп. Этим приемом пользуются, в частности, в случаях, когда невозможно прямое Н. Н. олефинов апротонными нитрующими агентами в зависимости от условий и строения реагентов может идти по разным направлениям, включая отщепление Н+, присоединение элементов р-рителя и противоиона, полимеризацию и др., напр.:

3053-23.jpg

При Н. олефинов тетранитрометаном в зависимости от строения олефина образуются либо алифатич. полинитро-соед., либо производные изоксазолидина, напр.:

3053-24.jpg

Нек-рые СН-кислоты при Н. образуют анионы соответствующих нитросоед.; напр., при действии на флуорен этил-нитрата в присут. С,Н5ОК образуется К-соль 9-нитро-флуорена, примером Н. карбанионов может служить также превращ. солей моно- и динитросоед. соотв. в геминальные ди- и тринитропроизводные при действии FNO2.

Соед. с активир. метиленовой группой можно нитровать и в кислых условиях; напр., при обработке диэтилмалоната HNO3 образуется нитродиэтилмалонат, Н. в аналогичных условиях 1,3-индандиона с послед. щелочным гидролизом образующегося a-нитрокетона - удобный метод синтеза первичных нитроалканов:

3053-25.jpg

Электрофильное Н. аминов в отличие от Н. по атому С-обратимый процесс и протекает по схеме:

3053-26.jpg

Лимитирующая стадия р-ции-перегруппировка комплекса амина с NO2 в протонир. нитрамин.

В пром-сти Н. аминов проводят кислыми нитрующими агентами (конц. HNO3 или ее смесями с H2SO4, уксусной к-той или ангидридом). Слабоосновные амины и амиды нитруются с высокими выходами. Высокоосновные амины (первичные и вторичные), протонир. форма к-рых не реагирует с NO2+, превращают либо в амиды, к-рые нитруют и затем снимают защитную ацильную группу щелочным гидролизом, либо в N-хлорамины; в последнем случае Н. проводят в присут. катализаторов (НСl, ZnCl2).

Н. третичных аминов конц. HNO3 или ее смесью с уксусным ангидридом сопровождается разрывом связи С— N (такой тип Н. наз. нитролизом). Эту р-цию широко используют в пром-сти ВВ, напр. для получения гексагена и октогена из уротропина. Жирно-ароматич. амины типа ArNHR часто нитруются в ядро, что происходит в результате непосредственного Н. по атому С или перегруппировки N-нитропроизводного; при этом группа NO2 вступает в ортo-положение к аминной функции. В ряде случаев Н. по атому N проводят через стадию образования соли. Для этого амин обрабатывают разб. HNO3 и на образовавшийся нитрат действуют конц. HNO3 или уксусным ангидридом:

3053-27.jpg

В лаб. условиях заместительное Н. ацетамидов, сульфамидов, уретанов, имидов или их солей проводят в апротон-ной среде апротонными нитрующими агентами, напр. солями нитрония:

3053-28.jpg

Из первичных аминов можно синтезировать N,N-дини-троамины, к-рые, в свою очередь, являются нитрующими агентами.

Спирты нитруют любыми нитрующими агентами, содержащими NO+2 (в кислых средах р-ция обратима), напр.: RCH2OH + NO2+X- 3053-29.jpgRCH2ONO2 + НХ.

Нуклеофильное Н. осуществляют солями HNO2:

3053-30.jpg

В р-цию вступают алкилгалогениды, в осн. бромиды и иодиды (см. Мейера реакция), a-галогенкарбоновые к-ты и их эфиры, алкилсульфаты. В качестве нитрующих агентов используют нитриты щелочных металлов в апротонных диполярных р-рителях или проводят Н. в присут. краун-эфиров. Побочные продукты р-ции-орг. нитриты, что связано с двойственной реакц. способностью NO-2. Р-цию используют для получения алифатич. нитросоединений.

Радикальное Н. характерно в осн. для парафинов и олефинов. Источником NO.2 служат HNO.3 и оксиды азота. Н. парафинов проводят разб. HNO3 под давлением при повыш. т-ре (Коновалова реакция). Р-ция Н. протекает по схеме:

3053-31.jpg

Наряду с Н. идет также процесс окисления, связанный с взаимод. NO.2 с орг. радикалом по атому кислорода. Наиб. легко протекает Н. по третичным атомам углерода, трудно-по первичным. В пром-сти нитропарафины получают жидкофазным и парофазным Н. смеси парафинов. Жидко-фазное Н. проводят HNO3 при норм. или повыш. давлении и т-ре выше 180°С, или оксидами азота при давлении 2-4,5 МПа, 150-220 °С, время контакта ~15 с. В этих условиях линейные углеводороды нитруются быстрее, чем их разветвленные изомеры. Парофазное Н. (метод Хэсса) осуществляют HNO3 при давлении 0,7-1,0 МПа, 400-500 °С, время контакта ~ 1 с. Побочные процессы-деструкция углеводородной цепи и окисление. Эти методы используют также для Н. алифатич. боковых цепей жирно-ароматич. соед. (р-цию проводят в присут. катализаторов -О2, О3, галогенов и др.),

Н. непредельных соед. HNO3 приводит к формальному замещению атома водорода у sp2-гибридизованного атома углерода на группу NO2. Условия Н. зависят от строения непредельных соединений. Обычно применяют 70-80%-ную HNO3 или разб. HNO3 в присут. оксидов азота.

Для Н. алкенов, циклоалкенов, диалкил- и диарилацети-ленов можно использовать N2O4, последний присоединяется по двойной связи, образуя вицинальные динитросоед., b-нитронитриты и b-нитронитраты, к-рые обычно легко отщепляют HNO2 или HNO3, давая непредельное нитро-соединение. Р-ция с ацетиленами приводит к смеси вици-нальных цис- и транc-динитросоед. наряду с продуктами окисления и деструкции.

По анион-радикальному механизму проходит Н. тетра-нитрометаном солей мононитросоед. в гем-динитроалканы, а также синтез последних из a-галогеннитроалканов при действии нитритов в щелочной среде (р-ция Тер Меера):

3054-1.jpg

Р-ция Н. известна в орг. химии с 1834 (синтез нитробензола Н. бензола азотной к-той, Э. Мичерлих). С сер. 19 в. она используется в пром-сти в связи с открытием Н. Н. Зининым восстановления нитробензола в анилин (см. Зинина реакция). Н.-наиб. удобный метод образования связей С—N и N—N в молекулах орг. соед., широко используется в орг. синтезе. По р-ции Н. в мире производится ~ 1 млн. т разл. нитропродуктов (гл. обр. в ряду ароматич. соед.).

Лит. см. при ст. Нитросоединения. В. А. Тартакоеский.



===
Исп. литература для статьи «НИТРОВАНИЕ»: нет данных

Страница «НИТРОВАНИЕ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учеников, учителей, студентов и просто химиков