ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

СТРУКТУРА ПОТОКОВ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


СТРУКТУРА ПОТОКОВ в аппаратах непрерывного действия, существенно влияет на хим. процессы, тепло-и массообмен. Для процессов в многофазных потоках важно взаимное направление движения фаз (противоток, прямоток и др.) и геом. формы движущихся объемов (пленки, струи, капли, пузыри). При рассмотрении переноса процессов существенны режим течения (ламинарный, турбулентный) и связанная с ним проблема пограничного слоя. Большое значение имеют различия во времени пребывания частиц потока в рабочем объеме и их взаимное перемешивание в результате нестационарности поля скоростей, неравномерности распределения скоростей и их разнонаправлен-ности. В частицах потока, покидающих рабочий объем быстрее других, процесс оказывается незавершенным; в частицах, задерживающихся в этом объеме, он проходит глубже. Поскольку скорость процесса обычно снижается во времени, его незавершенность определяется долей частиц с малым временем пребывания. Отрицательное влияние неравномерности распределения времени пребывания тем сильнее, чем выше требуемая степень незавершенности процесса.

Перемешивание в потоках подразделяют по направлению на поперечное и продольное, а также по уровню-перемешивание на макроуровне (смешивающиеся частицы сохраняют свою индивидуальность) и на микрруровне (происходит гомогенизация частиц). Поперечное перемешивание, как правило, связана с турбулентностью; оно интенсифицирует массо- и теплоперенос. Продольное перемешивание-взаимное смешение элементов потока, поступивших в аппарат в разные моменты времени. Оно приводит к выравниванию профилей концентраций и т-р по длине потока, к неравномерности распределения времен пребывания, часто уменьшает движущую силу процесса и снижает его эффективность. Для подавления продольного перемешивания и усиления поперечного применяют секционирование потока с помощью соответствующих устройств.

Для анализа хим.-технол. процессов используют модели С. п. разной степени идеализации; простейшие из них-идеальное вытеснение и идеальное смешение (см. Непрерывные и периодические процессы). В первом случае предполагается отсутствие продольного перемешивания при полном поперечном, время пребывания всех частиц одинаково. Эта модель удовлетворительно описывает, напр., мн. процессы в длинных тpyбax, особенно заполненных зернистыми слоями. В модели идеального смешения полагают, что элементы потока при поступлении в аппарат мгновенно и равномерно смешиваются со всем его содержимым, концентрации и т-ра одинаковы во всех точках объема. К этой модели близки, напр., потоки в аппаратах с интенсивным мех. перемешиванием.

Упомянутые модели-крайние случаи условий смешения в потоке. Промежут. случаи описывают модели, выбор к-рых определяется физ. картиной процесса и степенью сложности расчетов. Диффузионные модели представляют поток как вытеснение, на к-рое накладывается перенос в продольном (однопараметрич. модель) или в продольном и поперечном (двухпараметрич. модель) направлениях, причем перенос формально описывается ур-ниями диффузии. Ячеечная модель представляет поток как последовательность одинаковых ячеек идеального смешения, причем число ячеек подбирается так, чтобы отразить влияние продольного перемешивания. Ячеечная модель удовлетво-

рительно описывает потоки в секционир. аппаратах; как простую расчетную схему ее иногда используют и для иных потоков. Более сложные потоки описываются комбинир. моделями (схемные соед. простых моделей).

Каждой модели С. п. отвечает ур-ние или система ур-ний, позволяющие рассчитывать процесс в потоке и необходимый объем аппарата. Эти ур-ния содержат параметры моделей (эффективный коэф. диффузии, число ячеек и др.), для определения к-рых применяют разл. методы. Напр., на входе потока вводят по определенному закону (импульсному, ступенчатому и др.) индикатор, а на выходе регистрируют отклик-изменение концентрации индикатора во времени (см. также Трассёра метод). Обработка отклика методами статистики позволяет оценить закон распределения времени пребывания и найти параметры модели.

Сведения о С. п. особенно важны при моделировании пром. аппаратов. При переходе к ним от малых установок следует учитывать изменение С. п. Знание параметров С. п. и физ.-хим. характеристик процессов позволяет расчетным путем исследовать и прогнозировать поведение аппаратов и определять оптим. условия их работы.


===
Исп. литература для статьи «СТРУКТУРА ПОТОКОВ»:
Левеншпиль О., Инженерное оформление химических процессов, пер. с англ., М., 1969; Гельперин Н.И., Пебалк В. Л., Костанян А.Е., Структура потоков и эффективность колонных: аппаратов химической промышленности, М., 1977; Кафаров В. В., Методы кибернетики в химии и химической технологии, 4 изд., М., 1985, с. 298-365. И. А. Гильденблат, А.Ю. Закгейм.

Страница «СТРУКТУРА ПОТОКОВ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учеников, учителей, студентов и просто химиков