ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ, ф-ции параметров состояния макроскопич. системы (т-ры Т, давления р, объема V, энтропии S, чисел молей компонентов ni, хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому Т.п. соответствует набор параметров состояния, наз. естественными переменными.

Важнейшие Т.п.: внутренняя энергия U (естественные переменные S, V, ni); энтальпия Н= U — (— pV) (естественные переменные S, p, ni); энергия Гельмгольца (свободная энергия Гельмгольца, ф-ция Гельмгольца) F = = U — TS (естественные переменные V, Т, ni); энергия Гиббса (своб. энергия Гиббса, ф-ция Гиббса) G=U — — TS — (— pV) (естественные переменные p, Т, ni); большой термодинамич. потенциал(естественные переменные V, Т, mi).4108-1.jpg

Т.п. могут быть представлены общей ф-лой

4108-2.jpg

где Lk - интенсивные параметры, не зависящие от массы системы (таковы Т, p, mi), Xk-экстенсивные параметры, пропорциональные массе системы (V, S, ni). Индекс l = 0 для внутренней энергии U, 1-для H и F, 2-для G и W. Т.п. являются ф-циями состояния термодинамической системы, т.е. их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями и не зависит от пути перехода. Полные дифференциалы Т.п. имеют вид:

4108-3.jpg

Ур-ние (2) наз. фундаментальным ур-нием Гиббса в энергетич. выражении. Все Т. п. имеют размерность энергии.

Условия равновесия термодинамич. системы формулируются как равенство нулю полных дифференциалов Т.п. при постоянстве соответствующих естественных переменных:

4108-4.jpg

Термодинамич. устойчивость системы выражается неравенствами:

4108-5.jpg

Убыль Т.п. в равновесном процессе при постоянстве естественных переменных равна максимальной полезной работе процесса А:

4108-6.jpg

При этом работа А производится против любой обобщенной силы Lk, действующей на систему, кроме внеш. давления (см. Максимальная работа реакции).

Т.п., взятые как ф-ции своих естественных переменных, являются характеристическими ф-циями системы. Это означает, что любое термодинамич. св-во (сжимаемость, теплоемкость и т. п.) м. б. выражено соотношением, включающим только данный Т. п., его естественные переменные и производные Т.п. разных порядков по естественным переменным. В частности, с помощью Т. п. можно получить уравнения состояния системы.

Важными св-вами обладают производные Т.п. Первые частные производные по естественным экстенсивным переменным равны интенсивным переменным, напр.:

4108-7.jpg

[в общем виде: (9Yl/9Хi) = Li]. И наоборот, производные по естественным интенсивным переменным равны экстенсивным переменным, напр.:

4108-8.jpg

[в общем виде: (9Yl/9Li) = Xi]. Вторые частные производные по естественным переменным определяют мех. и тер-мич. св-ва системы, напр.:

4108-9.jpg

Т.к. дифференциалы Т.п. являются полными, перекрестные вторые частные производные Т. п. равны, напр. для G(T, p, ni):

4108-10.jpg

Соотношения этого типа называются соотношениями Максвелла.

Т. п. можно представить и как ф-ции переменных, отличных от естественных, напр. G(T, V, ni), однако в этом случае св-ва Т. п. как характеристич. ф-ции будут потеряны. Помимо Т.п. характеристич. ф-циями являются энтропия S (естественные переменные U, V, ni), ф-ция Массье Ф1 =4108-11.jpg (естественные переменные 1/Т, V, ni), ф-ция Планка 4108-12.jpg(естественные переменные 1/Т, p/Т, ni).

Т.п. связаны между собой ур-ниями Гиббса-Гельмгольца. Напр., для H и G

4108-13.jpg

В общем виде:

4108-14.jpg

Т.п. являются однородными ф-циями первой степени своих естественных экстенсивных переменных. Напр., с ростом энтропии S или числа молей ni пропорционально увеличивается и энтальпия Н. Согласно теореме Эйлера, однородность Т.п. приводит к соотношениям типа:

4108-15.jpg

В хим. термодинамике, помимо Т.п., записанных для системы в целом, широко используют среднемолярные (удельные) величины (напр.,4108-16.jpg, парциальные молярные величины [напр., стандартные изменения Т.п. в к.-л. процессе.4108-17.jpgнапр., стандартное изменение энтальпии при хим. р-ции равно разности энтальпий продуктов и исходных в-в, когда и те и другие находятся при заданных (выбранных) условиях, чаще всего при определенном внеш. давлении. Важные стандартные величины-стандартные энтальпии образования хим. соед.4108-18.jpg, энергии Гиббса образования хим. соед. 4108-19.jpg и т.п.

В статистической термодинамике пользуются аналогами энергии Гельмгольца и большого термодинамич. потенциала, к-рым отвечают соответственно канонич. и макрокано-нич. распределения Гиббса. Это позволяет рассчитывать Т. п. для модельных систем (идеальный газ, идеальный р-р) по молекулярным постоянным в-ва, характеризующим равновесную ядерную конфигурацию (межъядерные расстояния, валентные и торсионные углы, частоты колебаний и т. п.), к-рые м. б. получены из спектроскопич. и др. данных. Возможен расчет Т.п. через сумму по состояниям Z (интеграл по состояниям). Подобный подход позволяет установить связь Т. п. с молекулярными постоянными в-ва. Вычисление суммы (интеграла) Z для реальных систем-весьма сложная задача, обычно статистич. расчеты применяют для определения Т.п. идеальных газов.


===
Исп. литература для статьи «ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ»:
Кричевский И. Р., Понятия и основы термодинамики, М., 1962; Мюнстер А., Химическая термодинамика, пер. с нем., М., 1971.

М. В. Коробов.

Страница «ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учеников, учителей, студентов и просто химиков