ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

ТИОЛЫ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ТИОЛЫ (меркаптаны, тиоспирты), содержат в молекуле меркаптогруппу —SH (сульфгидрильную группу), непосредственно связанную с орг. радикалом. В статье рассмотрены алифатические и алициклические Т., об ароматических Т. см. Тиофенолы.

Атом S в меркаптогруппе имеет гибридизацию, промежуточную между sp2 и sp3; длины связей, напр., для СН3SН(нм) 0,1817 (С—S), 0,1329 (S—H), угол CSH 96,5°. Энергия связи S—H 360 кДж/моль. Группа SH обладает слабым отрицат. индукционным и положит. мезомерным эффектами; константы Гаммета sмета 0,25, shara 0,15. Кислотные св-ва ее выше, а основные ниже, чем группы ОН.

Названия Т. производят прибавлением к названию соответствующего углеводорода суффикса "тиол", напр. СН3SН-метантиол, С6Н11SН -циклогексантиол.

Низшие алифатические Т. обладают резким неприятным запахом, к-рый обнаруживается при очень низких концентрациях (до 2·10-9 мг/л). Т. кипят при более низких т-рах, чем их кислородные аналоги, что обусловлено меньшей склонностью к самоассоциации (см. табл.).


4114-33.jpg

В разб. р-рах Т. существуют в виде мономеров, а в более концентрированных-в виде димеров преим. линейного строения благодаря образованию водородных связей S—H...S; в жидком и твердом состоянии могут образовывать полимеры.

Для Т. характерна линейная зависимость термодинамич. величин от мол. массы. Энергия диссоциации связи С—SH в Т. для: CH3SH 293,3; C2H5SH 289,1; C3H7SH 284,9; mpem-C4H9SH 272,35 кДж/моль. Для CH3SH потенциал ионизации 9,44 эВ, с удлинением цепи понижается. В ИК спектрах Т. присутствует характеристич. полоса 2572 см-1, соответствующая валентным колебаниям группы SH; в спектрах комбинац. рассеяния характеристич. частоты 703, 1428 и 2572 см-1. В спектре ПМР хим. сдвиг (d) протона группы SH 1-2 м.д.; электроноакцепторные заместители смещают сигнал в более слабое поле.

Т.-слабые к-ты, рКа 10-11 (25 °С, вода), кислотность с удлинением и разветвлением алифатич. цепи понижается, при введении электроноакцепторных заместителей повышается. Для замещенных метантиолов RCH2SH значения рКа коррелируют с индукц. константами Тафта s*: рКа = = 10,22 - 3,50s*.

Хим. св-ва Т. определяются наличием подвижного атома водорода и неподеленных пар электронов у атома S. Для Т. характерна высокая нуклеофильность в сочетании с относительно низкой основностью. В качестве нуклеофилов Т. замещают атомы или группы у насьпц. атома углерода, присоединяются к алкенам и алкинам.

Т. легко окисляются. При действии О2 в щелочной среде, иода, o-иодбензойной к-ты, алифатич. сульфоксидов, акти-вир. МnО2, Н2О2 и N2О4 образуются дисульфиды RSSR (в присут. металлов-Сu, Со, Ni-p-ция протекает по радикальному механизму); (СН3СОО)4Рb в спирте окисляет Т. до сульфинатов RSOOCH3, галогены в водной среде-до сульфонилгалогенидов RSO2Hal, НКО3-до сульфокислот RSO3H.

В газовой фазе при 400 °С Т. разлагаются на H2S и соответствующий олефин.

Гетеролитич. присоединение Т. к активир. олефинам идет обычно в присут. оснований и протекает против правила Марковникова, для 1,1-диалкилэтиленов оно идет в присут. к-т и по правилу Марковникова, напр.:

4114-34.jpg

Против правила Марковникова присоединяются к олефинам также тиильные радикалы, генерируемые из Т. под действием УФ облучения, в присут. пероксидов, диазосоед. и др.

Замещенные ацетилена реагируют с Т. либо по правилу Марковникова, либо против него, напр.:

4114-35.jpg

Р-ция Т. с ацетиленами стереоспецифична.

Взаимодействие Т. с нитрилами в кислых средах приводит к иминотиоэфирам, напр.:

4114-36.jpg

При действии Т. на альдегиды или кетоны в присут. кислых катализаторов образуются соответствующие тио-ацетали или тиокетали:

4114-37.jpg

Мн. р-ции Т. протекают по ионному механизму с участием тиолат-анионов, обладающих сильными нуклеоф. св-вами. Тиолат-анионы генерируются из Т. в р-рах NaOH, триэтаноламина, пиридина и др., а также образуются при взаимод. эфиров Т. (напр., CH3COSR) с сильными основаниями в неводных средах либо при гидролизе тиомочевины.

Тиолат-анионы легко замещают атомы галогена (обычно Сl) в галогенидах В, Si, Sn, Ge, P, Мо и др., напр.:

4114-38.jpg

Р-ции тиолат-анионов с алкилхлоридами протекают в жидком NH3, с гексахлор- и гексафторбензолом - в среде этиленгликоля или пиридина (гексабромбензол с тиолат-анионами не реагирует), напр.:

4114-39.jpg

В основных или нейтральных средах Т. расщепляют ок-сирановые или тиирановые циклы, напр.:

4114-40.jpg

Ацилирование Т. в присут. оснований приводит к S-ациль-ным производным, напр.:

4114-41.jpg

При обработке Т. нитрозирующими агентами (NOC1, HNO2) образуются неустойчивые тионитриты RSNO, обладающие характерной окраской (цветная проба на Т.).

Осн. методы синтеза: 1) взаимод. NaSH или KSH с алкилирующими агентами [RI, ROSO3H, (RO)2SO2 и др.]. 2) Присоединение H2S к алкенам (ур-ние 1); в присут. катализаторов (металлы, оксиды или сульфиды металлов, к-ты, S) р-ция протекает по правилу Марковникова, при УФ облучении-против правила. 3) Пропускание паров спирта и H2S над ТhO2 или Аl2О3 (2); Т. образуются также при взаимод. спиртов (обычно C4-C16) с P4S10 (выход выше 70%). 4) Для получения b-замещенных Т. используют расщепление оксиранового цикла (или этиленимина) H2S (3) либо тииранового цикла разл. агентами (4).

4114-42.jpg

Т. могут быть получены также р-цией тиолкарбоновых к-т с алкенами или алкилгалогенидами с послед. гидролизом образующихся тиоэфиров (5); конденсацией алкилгалогенидов с тиомочевиной и далее щелочным гидролизом изо-тиурониевой соли (6) либо конденсацией алкилгалогени-дов с Na2S2O3 и кислотным гидролизом S-алкилтиосуль-фатов (т. наз. солей Бунте; см. Тиосульфаты органические) (7).

4115-1.jpg

Др. методы получения: взаимод. алкилгалогенидов с ксантогенатами щелочных металлов с послед. щелочным гидролизом или восстановлением LiAlH4 образующихся алкил-ксантогенатов (ур-ние 8), кислотный гидролиз или восстановление тритиокарбонатов (9); щелочной гидролиз дитио-карбаматов, получаемых взаимод. алкилхлоридов с N,N-диметилдитиокарбаматом Na (10); восстановление тионов, получаемых из кетонов и P4S10; восстановление диалкил-дисульфидов LiAlH4, NaBH4, Zn-Hg в H2SO4, PPh3 в CH3OH.

4115-2.jpg

В пром-сти низшие Т. получают взаимод. спиртов с H2S в присут. катализаторов при 300-350 °С; трет-алкантиолы C8-C16-взаимод. непредельных углеводородов с H2S в присут. А12О3 при 100-135 °С и давлении 3,5-7 МПа. С 1982 начато пром. выделение низших Т. из высокосернистого прир. газа.

Низшие Т. (С23) используют в качестве одорантов топливных газов, для получения пестицидов (напр., пер-хлорметилмеркаптан CCl3SCl); метантиол-для произ-ва метионина; Т. C8-C16-регуляторы полимеризации в произ-ве латексов, каучуков.

Тиолы, являющиеся ловушками для радикалов, используют для защиты от радиации и как антиокислители, напр. додекантиол—стабилизирующая добавка для каучуков.

Мировое произ-во Т. 200 тыс. т/год (1986), из них CH3SH более 20 тыс. т/год, Т. С28 и выше-более 100 тыс. т/год.


===
Исп. литература для статьи «ТИОЛЫ»:
Прилежаева E. H., Шостаковский М, F., "Успехи химии", 1963, т. 32, в. 8, с. 897-947; Общая органическая химия, пер. с англ., т. 5, М., 1983, с. 130-51; Большаков Г. Ф., Сераорганические соединения нефти, Новосиб., 1986; Houben-Weyl, Methoden der organischen Chemie, Bd 9, Stuttg., 1955; The chemistry of the Tiol Group, ed. by S. Patai, N. Y., 1974. Э. H. Дерягина.


Страница «ТИОЛЫ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учеников, учителей, студентов и просто химиков