ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ, изучает зависимости между составом и св-вами макроскопич. систем, составленных из неск. исходных в-в (компонентов). Для Ф.-х. а. характерно представление этих зависимостей графически, в виде диаграммы состав-свойство; применяют также таблицы числовых данных и аналит. записи. T. к. св-ва системы зависят не только от ее состава, но и от др. факторов, определяющих состояние системы,- давления, т-ры, степени дисперсности, на-пряженностей гравитац. и электромагн. полей, а также времени наблюдения,- то в общей форме говорят о диаграммах фактор равновесия - св-во, или о физ.-хим. (химических) диаграммах. На этих диаграммах все хим. процессы, происходящие в системах при изменении к.-л. фактора равновесия, как то - образование и распад хим. соед., появление и исчезновение твердых и (или) жидких р-ров и т. п., выражаются как геом. изменения комплекса линий, пов-стей и точек, к-рый образует диаграмму. Поэтому анализ геометрии диаграмм позволяет делать заключения о соответственных процессах в системе.

Два осн. принципа Ф.-х. а. были сформулированы Н.С. Курнаковым. Согласно принципу соответствия, каждой совокупности фаз, находящихся в данной системе в равновесии в соответствии с фаз правилом, на диаграмме отвечает определенный геом. образ. На основании этого принципа Н.С. Курнаков определил Ф.-х. а. как геом. метод исследования хим. превращений.

Второй осн. принцип Ф.-х.а., наз. принципом непрерывности, формулируется след. образом: при непрерывном изменении параметров, определяющих состояние системы, св-ва отдельных ее фаз изменяются непрерывно. Св-ва же системы в целом изменяются также непрерывно, но при условии, что не возникают новые фазы и не исчезают старые; если же число фаз меняется, то изменяются и св-ва системы, причем, как правило, скачкообразно.

Третий принцип Ф.-х. а. был предложен Я.Г. Горощенко. Он утверждает, что любой набор компонентов, независимо от их числа и физ.-хим. св-в, может составить систему (принцип совместимости). Из него следует, что диаграмма любой системы содержит все элементы частных систем (подсистем), из к-рых она составлена. В общей системе элементы трансляции частных систем совмещаются с геом. образами на хим. диаграмме, возникающими как отображение процессов, протекающих с участием всех компонентов общей системы.

Одним из осн. направлений теории Ф.-х. а. является изучение топологии хим. диаграммы. Преимущество Ф.-х. а. как метода исследования заключается в том, что он не требует выделения продукта хим. взаимодействия компонентов из реакционной смеси, вследствие чего метод позволяет исследовать хим. превращения в р-рах, сплавах (особенно металлических), стеклах и т. п. объектах, к-рые практически невозможно исследовать с применением классич. препара-тивно-синтетич. методов. Широкое использование Ф.-х. а. получил при исследовании комплексообразования в р-рах с целью выяснения состава и определения устойчивости хим. соединений. График состав - св-во имеет обычно один экстремум, как правило, максимум. В простых случаях максимум соответствует молярному отношению компонентов системы, представляющему стехиометрию комплексного соед. В общем случае точки экстремумов на кривых (или пов-стях) св-в, а также точки перегибов не отвечают составу образующихся в системе хим. соед., но в пределе, когда степень диссоциации хим. соед. равна нулю, непрерывная кривая зависимости св-ва от состава распадается на две ветви, пересекающиеся в сингулярной точке, абсцисса к-рой отвечает составу хим. соединения.

Диаграммы состав - св-во лежат в основе аналит. методов (колориметрия, потенциометрия и др.). Для использования к.-л. св-ва в аналит. целях желательно, чтобы существовала аддитивная зависимость значений этого св-ва от состава. Поэтому важное значение уделяется рациональному выбору св-ва (в частности, прямого или обратного, напр. электропроводности или электросопротивления), а также выбору способа выражения концентрации компонентов системы (массовые, молярные, объемные, эквивалентные доли или проценты). В совр. Ф.-х. а. число используемых св-в системы составляет много десятков. В принципе можно применять любое св-во, к-рое м. б. измерено или вычислено. Напр., при решении теоретич. вопросов, в частности при выводе разл. типов диаграмм, используют к.-л. термодинамич. потенциал, к-рый не м. б. измерен непосредственно. При выборе св-ва необходимо учитывать как возможную точность определения его значений, так и его чувствительность к происходящим в системе хим. превращениям. Напр., плотность в-ва м. б. определена с большой точностью, но она малочувствительна к образованию хим. соед., тогда как твердость чутко реагирует на хим. взаимод. в системе, однако мала точность ее определения. Для Ф.-х. а. характерно параллельное исследование и сопоставление результатов определения неск. св-в, напр. электропроводности, твердости.

Среди хим. диаграмм особое место занимают диаграммы плавления (плавкости), диаграммы р-римости, диаграммы давления пара, к-рые являются вариантами диаграммы состояния. На таких диаграммах любая точка, независимо от того, находится она на к.-л. линии или пов-сти диаграммы или нет, описывает состояние системы. Диаграмма состояния есть основа диаграммы любого св-ва, т. к. значение каждого из св-в системы зависит в общем случае и от состава, и от т-ры, и от давления, т.е. от всех факторов равновесия, соотношение между к-рыми дает диаграмма состояния. Все шире исследуют и используют на практике диаграммы, показывающие зависимость состояния системы одновременно от двух важнейших факторов равновесия - давления и т-ры. Эти диаграммы обозначают как р-Т-х-диаграммы (х - молярная доля компонента). Даже для двойной системы построение р-Т-х- диаг-раммы требует использования пространств, системы координат, поэтому диаграмма состав - св-во для двойных и более сложных систем строятся и исследуются, как правило, при постоянных давлении, т-ре, др. внеш. факторах. Сложность построения хим. диаграмм потребовала развития соответствующих методов графич. изображения.

Ф.-х. а. способствовал решению мн. теоретич. проблем химии, в частности, созданию теории строения хим. соед. переменного состава (см. Нестехиометрия). Ф.-х. а. является основой создания новых и модифицирования известных материалов - сплавов, полупроводников, стекол, керамики и т.д. путем, напр., легирования. На Ф.-х.а. и физ.-хим. диаграммах базируются многие технол. процессы, связанные, в частности, с кристаллизацией, ректификацией, экстракцией и т. п., т. е. с разделением фаз. Подобные диаграммы указывают, в частности, на условия выделения соед., выращивания монокристаллов. T. наз. метод остаточных концентраций позволяет исследовать р-ции осаждения хим. соед. в результате взаимод. в р-рах. По этому методу состав твердых фаз -продуктов р-ции - определяется разностью между содержанием реагирующих компонентов в ряду исходных смесей и в соответствующих равновесных р-рах по окончании взаимод. При этом строится диаграмма зависимости равновесных кон-центраций реагирующих компонентов в р-ре от отношения между ними в исходных смесях. Параллельно обычно изменяют рН, электропроводность р-ров, поглощение света суспензией, др. св-ва.

В классич. Ф.-х. а. системы исследовались только в равновесном состоянии. Приближение к равновесию часто требует большого времени либо вообще трудно достижимо, поэтому для практич. использования метода необходимо изучение систем в неравновесном состоянии, в частности в процессе приближения к равновесию. Строго говоря, неравновесными считаются системы, в к-рых участвуют метастаоильные модификации в-в, способные существовать сколь угодно продолжительное время. Техн. применение материалов в неравновесном состоянии, напр. стеклообразных металлич. сплавов, композиционных материалов, стеклообразных полупроводников, привело к необходимости изучения диаграмм состав -св-во для заведомо неравновесных систем.

Ф.-х. а. оказался плодотворным для исследования и синтеза новых соед. в результате необратимых р-ций в неравновесных системах. Исследование систем в процессе перехода в равновесное состояние позволяет установить существование не только конечных продуктов р-ции, но и промежут. в-в, а также образующихся нестойких в-в. Кинетич. фактор, т. е. скорость превращения (скорость приближения к равновесию), теперь рассматривается на равных правах с др. критериями и др. св-вами. На св-ва системы существенное влияние оказывает ее дисперсность - мол.-дисперсное распределение компонентов (субмикроскопич. состояние), состояние коллоидного растворения и т. д., вплоть до монокристаллич. состояния. Диаграммы состав - структура - степень дисперсности - св-во определяют особенности совр. изучения в Ф.-х. а.

Развитие ЭВМ привело к тому, что в Ф.-х. а. значительно усилилась роль аналит. формы выражения зависимостей св-в системы от ее состава. Это облегчает хранение информации (совр. компьютерные системы позволяют собирать и хранить справочный материал по хим. диаграммам и в графич. виде) и, в особенности, мат. обработку результатов, к-рая прежде применялась в осн. лишь при исследовании комплексообра-зования в р-рах. В известной мере использование совр. вычислит, техники позволяет преодолеть ограниченность Ф.-х. а., заключающуюся в том, что он устанавливает, какие именно хим. превращения имеют место в системе, но не дает ответа на вопросы, связанные с причиной и механизмом этих превращений. Расчетные методы позволяют извлечь дополнит. информацию из хим. диаграмм, напр. определять степень диссоциации хим. соед. в расплаве на основании анализа кривизны линии ликвидуса для двойных систем или изменение свободной энергии системы при обмене солей, исходя из формы изотерм пов-сти ликвидуса для тройных взаимных систем. Привлечение разл. теорий твердого тела, моделей жидкости и состояний газовых смесей, наряду с обобщением эксперим. данных, позволяет получать физ.-хим. диаграммы (или их элементы) расчетным путем.

Исторический очерк. Осн. идея Ф.-х. а. была высказана М.В. Ломоносовым (1752), первые попытки установить образование в системе хим. соед., исходя из зависимости ее св-в от состава, относятся к нач. 19 в. В сер. 19 в. работами П.П. Аносова (1831), Г.К. Сорби (1864), Д.К. Чернова (1869) были заложены основы металловедения; Д.И. Менделеевым впервые был проведен геом. анализ диаграмм состав - св-во на примере изучения гидратов серной к-ты. К этому же периоду относятся работы В.Ф. Алексеева о взаимной р-римости жидкостей, Д.П. Коновалова - об упругости пара р-ров (см. Коновалова законы), И.Ф. Шредера - о температурной зависимости р-римости (см. Pacmвopuмость). Ha рубеже 19-20 вв. в связи с потребностями техники началось бурное развитие Ф.-х. а. (А. Ле Шателье, Я. Вант Гофф, Ф. Осмонд, У. Робертс-Остен, Я. Ван Лаар и др.). Основополагающие теоретич. и эксперим. работы совр. Ф.-х. а. принадлежат Н.С. Курнакову. Им были объединены в одно направление изучение сплавов и однородных р-ров и предложен термин "Ф.-х. а." (1913). Исследования комплексообразования в р-рах с работами И.И. Остромысленского (1911), П. Жоба (1928) и разработкой методов определения состава хим. соед. и констант их устойчивости по данным измерений разл. физ. св-в р-ров.


===
Исп. литература для статьи «ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ»:
Курнаков Н.С., Введение в физико-химический анализ, 4 изд., М.-Л., 1940; Аносов В.Я., Погодин С.А., Основные начала физико химического анализа, М.-Л., 1947; Соловьев Ю.И., Очерки истории физико-химического анализа, M., 1955; Бабко А.К., Физико-химический анализ комплексных соединений в растворах, К., 1955; Михеева В.И., Метод физико-химического анализа в неорганическом синтезе, M., 1975; Ано-совВ.Я., Озерова М.И., Фиалков Ю.Л., Основы физико-химического анализа, M., 1976; Г о r о щ е н к о Я.Г., Физико-химический анализ гомогенных и гетерогенных систем, К., 1978; Черногоренко В.Б., Прядко Л.Ф., "Ж. неорг. химии", 1982, т. 27, № 6, с. 1527-30; Глазов В.М., "Изв. АН СССР. Сер. неорг. материалы", 1984, т. 20, № 6, с. 925-36; ФедоровП.И., Федоров П.П., Др о б о т Д.В., Физико-химический анализ безводных солевых систем, M., 1987. П.И. Федоров.

Страница «ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учеников, учителей, студентов и просто химиков