ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

ЦИКЛОТРОННЫЙ РЕЗОНАНС


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ЦИКЛОТРОННЫЙ РЕЗОНАНС, явление резонансного поглощения энергии переменного электрич. поля заряженной частицей, находящейся в магн. поле. Заряженная частица, помещенная в магн. поле напряженности Н и имеющая отличный от нуля импульс в плоскости, перпендикулярной полю Н, совершает в этом поле движение по спирали с частотой6022-44.jpgзависящей только от ее массы т, заряда q и Н:

6022-45.jpg

где Н=|Н| . Если в плоскости, перпендикулярной полю Н, приложить переменное электрич. поле, частота изменения к-рого совпадает с6022-46.jpgто движение частицы примет резонансный характер.
Явление наз. ионным Ц. р. (ИЦР), если заряженная частица - ион. ИЦР используют в масс-спектрометрии с 1950. Впервые этот метод был применен в масс-анализаторе (омегатроне), в к-ром измерялся ток ионов, попавших в резонанс с внеш. полем. В омегатроне частицы движутся во взаимно перпендикулярных переменном электрич. и постоянном магнитном полях. По резонансной частоте, используя ф-лу (1), определяют массу ионов.
Затем был развит дрейфовый метод ИЦР, в к-ром ионы дрейфовали в скрещенных постоянных электрич. и магнитном полях. Детектировались ионы, попадающие в резонанс с переменным электрич. полем, приложенным перпендикулярно направлению магн. поля и направлению дрейфа. Применение метода было обусловлено возможностью относительно длительного (мс) удержания ионов в области дрейфа и др. факторами.
Совр. метод масс-спектрометрии с использованием Ц. р.-спектрометрия ИЦР с преобразованием Фурье (ИЦР ПФ). Резонансное поглощение ионами электромагн. энергии происходит в анализаторе. Высокочастотное электрич. поле позволяет идентифицировать ионы по резонансному поглощению энергии при совпадении частоты поля и циклотронной частоты ионов с послед. фурье-анализом (см. Фурье-спектроскопия)сигнала. Интенсивность сигнала Ii от группы ионов массы mi, и заряда qi представляет собой экспоненциально затухающую косинусоиду:

6022-47.jpg

где6022-48.jpg - частота Ц. р. иона;6022-49.jpg- частота столкновения ионов с молекулами остаточного газа в ячейке прибора (пропорциональна давлению газа): t - время; Аi - кол-во ионов с массой mi.
Если в ячейке спектрометра находятся ионы с разл. массами и возбуждено циклотронное движение всех ионов, сигнал представляет собой сумму сигналов от отдельных групп:6022-50.jpg преобразование Фурье к-рой дает серию пиков на оси частот в положениях, соответствующих циклотронным частотам6022-51.jpg с высотами, пропорциональными Аi. В соответствии с ф-лой (1) частотный спектр преобразуется в спектр масс.
Метод ИЦР ПФ позволяет одновременно регистрировать все ионы в ячейке прибора, определять их массы и относит. кол-ва, что дает возможность следить за превращениями ионов в ячейке при исследованиях ионно-молекулярных р-ций. Т. к. ширина спектрального пика после преобразования Фурье гармонич. сигнала, имеющего длительность Т, обратно пропорциональна Т, то разрешающая способность6022-52.jpg Для обыкновенных электромагнитов с величиной Н6022-53.jpg2 Тл и временем синхронного движения ионов6022-54.jpg мс величины R6022-55.jpg104-5 близки к рекордным для др. методов масс-спектрометрии. Использование сверхпроводящих магнитов с H6022-56.jpg5 Тл и более глубокого вакуума (10-7 Па) приводит к увеличению как6022-57.jpg так и Т (до десятков с), что позволяет достичь R ~ 108. Точность определения абс. значений масс атомов и молекул этим методом превышает 10-6.
Особенностью метода ИЦР ПФ является также возможность длит. (в течение неск. часов) удержания ионов в локализованной области пространства. Ионы в спектрометре ИЦР ПФ захватываются в ловушку, создаваемую постоянными электрич. и магн. полями. На рис. показана одна из наиб. распространенных ячеек ИЦР ПФ, состоящая из б электродов. Электроды 3-6 заземлены по постоянному току, а на электроды 1, 2 подается потенциал - положительный для положит. ионов и отрицательный для отрицат. ионов,- создающий потенциальную яму вдоль оси ячейки. Ионы, образовавшиеся внутри этой ямы, запираются в ячейке, т. к. они не могут выйти вдоль оси из-за потенциального барьера, а поперек оси - из-за магн. поля.

6022-58.jpg

Схема ячейки спектрометра ИЦР ПФ: 1, 2- запирающие электроды; 3, 4 - возбуждающие электроды; 5, 6 - детектирующие электроды; 7 -источник ионизирующих электронов; 8 - направление магнитного поля; М+ - ион.
Цикл измерения масс-спектра в методе ИЦР ПФ состоит: из интервала времени создания ионов в ячейке; временной задержки (при необходимости) для превращения ионов или их взаимод. с др. частицами; импульса возбуждения циклотронного движения ионов, подаваемого на пластины 3 и 4; интервала времени измерения сигнала от свободно вращающихся ионов с пластин 5 и 6 до импульса очистки ячейки от всех ионов "выворачиванием" потенциальной ямы, что достигается путем подачи на пластины 1 и 2 потенциалов обратной полярности. Т. обр., пауза между интервалом времени, в к-ром ионы создаются, и интервалом времени, в к-ром они анализируются по массам, может составлять часы. В результате метод дает возможность исследовать разл. "медленные" процессы взаимод. ионов с молекулами, электронами и светом. Высокая разрешающая способность метода позволяет использовать его для разделения дуплетов и мультиплетов в масс-спектрах. Методом ИЦР ПФ впервые разделен дуплет 3Не+ - T+ и измерена разность масс ионов.
Метод ИЦР ПФ является наиб. точным масс-спектрометрич. методом измерения масс. Его используют для исследования р-ций ионных кластеров с молекулами, лазерной десорбции ионов с пов-стей твердых тел, диссоциации многоатомных ионов и др.
Ц. р. применяют в физике твердого тела при изучении энергетич. спектра электронов, особенно для точного измерения их эффективной массы. С помощью Ц. р. возможно определение знака заряда носителей, изучение процессов их рассеяния и электрон-фононного взаимод. в металлах. В твердых телах область наблюдения Ц. р. ограничивается низкими т-рами (1 - 10 К) и частотами6022-59.jpg> 109 Гц. В полупроводниках Ц. р. наблюдается на частотах 1010 - 1012 Гц в полях 8 x 104- 8 x 106 А/м.


===
Исп. литература для статьи «ЦИКЛОТРОННЫЙ РЕЗОНАНС»:
Леман Т., Берси М., Спектрометрия ионного и циклотронного резонанса, пер. с англ., М., 1980; Николаев Е. Н., "Ж. Всес. хим. об-ва им. Д. И. Менделеева", 1985, т. 30, № 2, с. 136-42; Соmisакоw М. В.; Marshall A. G., "Chera. Phys. Lett.", 1974, v. 25, № 2, p. 282-83.

Е. Н. Николаев.

Страница «ЦИКЛОТРОННЫЙ РЕЗОНАНС» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учеников, учителей, студентов и просто химиков