ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.
 
Всё о Химии - Ximia.org

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ЭЛЕКТРОН (символ е- , е), стабильная элементарная частица с наименьшим отрицат. электрич. зарядом. Абс. величина заряда Э. e= 1,6021892 x 10-19 Кл, или 4,803242 x 10-10 ед. СГСЕ. Масса покоя Э. те = 9,109534 x 10-28 г. Спин Э. равен6032-33.jpg(6032-34.jpg -постоянная Планка); система Э. подчиняется статистике Ферми - Дирака (см. Статистическая термодинамика). Магн. момент Э., связанный с его спином, равен -1,001166032-35.jpg, где6032-36.jpg магнетон Бора.
Э.- первая элементарная частица, открытая в физике (Дж. Дж. Томсон, 1897); соответствующая ему античастица -позитрон е+ - была открыта в 1932. Э. относится к классу лептонов, т. е. частиц, не проявляющих сильного взаимодействия, в то же время он участвует в электромагнитном, слабом и гравитационном взаимодействиях (см. Элементарные частицы). Э. могут возникать при распаде отрицательно заряженного мюона,6032-37.jpg-распаде, др. р-циях элементарных частиц. Примером р-ций с превращением Э. может служить аннигиляция Э. и позитрона с образованием двух6032-39.jpg-квантов:6032-38.jpg
В классич. электродинамике Э. рассматривается как частица, движение к-рой подчиняется ур-ниям Лоренца-Максвелла. Сформулировать понятие "размер Э." можно лишь условно, хотя величину r0 = е2ес2 и принято наз. классич. радиусом Э. Описание поведения Э. в потенц. полях, отвечающее эксперим. данным, удалось дать лишь на базе квантовой теории, согласно к-рой движение Э. подчиняется ур-нию Шрёдингера для нерелятивистских явлений и ур-нию Дирака для релятивистских (см. Квантовая механика). Вычисляемые в релятивистской квантовой теории характеристики Э., напр. магн. момент, с чрезвычайно высокой точностью совпадают с их эксперим. значениями.
Э. входят в состав всех атомов и молекул; они определяют многие оптич., электрич., магн. и хим. св-ва в-ва. Удаление Э. из нейтрального атома или молекулы на бесконечность приводит к появлению положит. иона; присоединение Э.- к отрицат. иону; миним. энергия, необходимая для удаления Э. либо выделяющаяся при присоединении Э.,- важная характеристика частицы, определяющая ее окислит.-восстановит. способность (см. Потенциал ионизации, Сродство к электрону).
В химии с Э. связывают образование разл. квантовых состояний молекул. Согласно адиабатическому приближению Э. молекулы движутся в фиксир. поле ядер, к-рое считается внешним по отношению к системе Э. Возникновение хим. связи между атомами обусловлено более сильным понижением электронной энергии системы при сближении атомов по сравнению с увеличением энергии отталкивания ядер. Анализ энергии системы Э. при разл. геом. конфигурациях ядер (см. Поверхность потенциальной энергии)позволяет судить о наиб. стабильных (равновесных) конфигурациях молекул, относит. стабильности разл. конформеров, колебат.-вращат. уровнях для каждого из электронных состояний и, что весьма важно,- о возможных путях и механизмах превращений хим. соед. (см. Реакционная способность). Распределение электронной плотности в в-вах - реагентах и изменение этого распределения при хим. взаимод. учитывается при изучении динамики элементарного акта р-ции.
Ценную информацию о строении молекул в разл. квантовых состояниях дает изучение углового распределения Э., выбиваемых из молекул при разл. физ. воздействиях, напр. при облучении квантами достаточно высокой энергии либо при столкновениях с Э. (см. Фотоэлектронная спектроскопия). Наличие у Э. спина, приводящее к существованию электронных состояний молекул разл. мультиплетности, и связанного со спином магн. момента позволяет изучать расщепление мультиплетных состояний в магн. поле (см. Электронный парамагнитный резонанс). Со спином Э. связаны и различие св-в диа- и парамагнетиков в магн. поле, ферромагнетизм, антиферромагнетизм и т.д. Св-ва мн. материалов, в частности металлов и им подобных соед., определяются системой электронов, образующих своего рода электронный газ (см. Металлическая связь). С коллективными состояниями системы электронов связано возникновение сверхпроводящего состояния в-ва (см. Сверхпроводники). Управляемые потоки Э. широко используют в технике, напр. в вакуумной электронике, а создаваемые в ускорителях потоки электронов высокой энергии - в исследованиях пов-сти твердых тел. В конденсир. среде Э. может быть захвачен молекулами среды и существовать в таком состоянии длительное время, напр. в р-рах щелочных металлов в аммиаке в отсутствие кислорода - в течение неск. месяцев (см. Сольватированный электрон).

Лит.: Андерсон Д., Открытие электрона, пер. с англ., М., 1968; Т оме он Г. П., "Успехи физ. наук", 1968, т. 94, в. 2, с. 361-70; Бейзер А., Основные представления современной физики, пер. с англ., М., 1973; Салем Л., Электроны в химических реакциях, пер. с англ., М., 1985; Пономарев Л.И., Под знаком кванта, 2 изд., М., 1989.

Н. Ф. Степанов.

 

Всё о Химии для учеников, учителей, студентов и просто химиков