ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по Химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.

 
Всё о Химии - Ximia.org

КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ, р-ции, в ходе к-рых концентрации промежут. соединений и скорость р-ции испытывают колебания. Колебания м. б. периодическими, в этом случае значения c(t) колеблющихся концентраций (t - время) можно представить рядом Фурье:
421_440-4.jpg
где аn, bn - коэффициенты разложения ф-ции c(t) в рад (амплитуды отдельных гармонич. компонент), An - комплексные амплитуды, w - частота колебаний (i - мнимая единица). В общем случае амплитуды и частоты колебаний могут изменяться во времени (колебания затухающие, нарастающие, модулированные). Колебания концентраций промежут. соед. могут быть непериодическими или иметь непрерывный спектр. Колебания концентраций промежут. соед. - относительно редкое явление, наблюдаемое в ходе нек-рых сложных р-ций. Элементарные хим. р-ции являются релаксац. процессами, обеспечивающими монотонное приближение реагирующей системы к состоянию термодинамич. равновесия. Для возникновения колебаний в ходе гомог. изотермич. р-ции необходимо наличие промежут. соед. и взаимодействие между ними. В открытых системах существуют стационарные состояния, в к-рых концентрация c(i) i-го промежут. соед. не зависит от времени (сi=c0i). При небольших отклонениях системы от стационарного состояния изменение сi описывается суммой экспонент с комплексными показателями:
421_440-5.jpg
Величины li=gi+iwi, наз. характеристич. числами. В неколебат. устойчивых системах li отрицательны и действительны (gi<0, wi=0). В этих случаях обычно вместо li используют времена релаксации ti=1/li. Если стационарное состояние достаточно близко к состоянию термодинамич. равновесия (выполняются соотношения взаимности Онсагера, см. Термодинамика необратимых процессов), то все li действительны и отрицательны (теорема Пригожина). В этом случае система приближается к стационарному состоянию без колебаний. В сильно неравновесных системах li могут стать комплексными числами, что соответствует появлению колебаний около стационарного состояния. При определенных значениях параметров сильно неравновесной системы (концентраций исходных реагентов, т-ры, давления и т.д.) стационарное состояние может потерять устойчивость. Потеря устойчивости стационарного состояния является частным случаем бифуркации, т.е. изменения при определенном (бифуркационном) значении к.-л. параметра числа или типа разл. кинетич. режимов системы. Имеется два простейших случая бифуркации устойчивого стационарного состояния. В первом случае одно li становится положительным. При этом в точке бифуркации (li=0) исходно устойчивое состояние становится неустойчивым или сливается с неустойчивым стационарным состоянием и исчезает, а система переходит в новое устойчивое состояние. В пространстве параметров в окрестности этой бифуркации существует область, где система обладает по крайней мере тремя стационарными состояниями, из к-рых два устойчивы, а одно неустойчиво. Во втором случае действит. часть одной пары комплексных характеристич. чисел становится положительной. При этом в окрестности потерявшего устойчивость стационарного состояния возникают устойчивые колебания. После прохождения точки бифуркации при дальнейшем изменении параметра количеств, характеристики колебаний (частота, амплитуда и т.д.) могут сильно меняться, но качеств. тип поведения системы сохраняется. В хим. системах неустойчивости могут возникать в результате ускорения р-ции ее продуктами или др. видов автокатализа, субстратного или перекрестного ингибирования (см. Ингибиторы), конкуренции исходных в-в за промежут. соед. и т.п. В неизотермич. системах причиной неустойчивости может служить самоускорение экзотермич. стадий р-ции, а в электрохим. р-циях экспоненциальная зависимость скорости р-ции от поляризации электродов. Появление простейших неустойчивостей и соответствующих кинетич. состояний системы удобно пояснить на примере ферментативной р-ции с двумя субстратами S1 и S2, один из к-рых, напр. S1, ингибирует фермент Е:
S01DS1 S02DS2 S1+E1 DS1E S1E+S2DS1E:P S1E+S1DS1S1E
Субстраты S1 и S2 могут поступать в систему извне (напр., за счет притока в проточном реакторе или путем диффузии через мембрану) или образовываться в результате медленных гомог. р-ций S0iDSi (i=1,2); так же происходит удаление продукта Р, не влияющего на ход р-ции. S1E, S1S2E и S1S1Е - фермент-субстратные комплексы; ингибирование фермента происходит из-за образования неактивного комплекса S1S1E. В этой системе имеется 6 динамич. переменных: концентрации субстратов [S1] и [S2], фермента [Е] и разл. форм фермент-субстратных комплексов, причем [Е] + [S2E]+[S1S2E]+[S1S1E]=е - полная концентрация фермента. Обычно e<<[S1] и e<<[S2], поэтому можно применить квазистационарности приближение и представить концентрации фермент-субстратных комплексов как алгебраич. ф-ции концентраций субстратов. В результате поведение системы можно описать двумя дифференц. ур-ниями относительно [S1] и [S2]. Удобно использовать безразмерные переменные s1=[Sl]/K1 и s2=[S2]/K2 (K1 и К2 - константы Михаэлиса), параметры a1 и a2 - скорости поступления субстратов, а также безразмерные комбинации констант скорости элементарных стадий e, b, g, d, ( и безразмерное время t. Тогда дифференц. ур-ния принимают вид:
421_440-6.jpg
Рассмотрим случай, когда эта система имеет два устойчивых стационарных состояния - бистабильную систему, или триггер. Если a2>>a1/e, т.е. скорость р-ции S02DS2 очень велика по сравнению со скоростью р-ции S01DS1 и скоростью ферментативной р-ции, то [S2] постоянна и равна [S02]. В этом случае поведение системы описывается только одним ур-нием (3.1). Зависимости dsl/dt от s1 при разных значениях a1 показаны на рис. 1, а. Пунктирные кривые соответствуют бифуркац. значениям параметра a-a'1 и a:1, а кривые, заключенные между ними, трижды пересекают ось абсцисс. Точки пересечения соответствуют стационарным состояниям s101, s102 и s103, среднее из к-рых s102 неустойчиво и разделяет области притяжения устойчивых состояний s101
421_440-7.jpg
Рис. 1. Ферментативная система с тремя стационарными состояниями (биохим. триггер): a зависимость скорости ds1/dt изменения безразмерной концентрации субстрата S1, от ее значения (s1) при разл. скоростях (a1) поступления субстрата; пунктиром обозначены кривые, соответствующие бифуркац. значениям a'1 и a''1; 6 - зависимость стационарных значений s01 от a1; s101 и s103 устойчивые, s102 - неустойчивое стационарные состояния.

и s103. На кривой зависимости стационарной концентрации s10 от a1 (рис. 1, б) область с тремя стационарными состояниями лежит в интервале (a'1, a''1). При прямом и обратном медленном изменении параметра a1 происходит движение системы по различным траекториям, т.е. гистерезис. Следует отметить, что описанную бистабильность можно получить в системе с односубстратной р-цией, к-рая ведет себя аналогично двухсубстратной р-ции с фиксир. концентрацией одного из субстратов. Чтобы система с одной переменной и бистабильностью стала колебательной, нужно превратить параметр в медленную переменную. В ферментативной системе с двумя субстратами таким параметром, естественно, является концентрация второго субстрата s2. В этом случае для описания системы нужно использовать оба ур-ния (3). Относительные изменения концентрации S2(D[S2]/[S2]) будут медленными по сравнению с относительными изменениями Sl, если [S2]>>[S1]. При переходе к безразмерным параметрам это условие принимает след, вид: a1~a2~1, e<<1. На фазовой плоскости с координатами s1, s2 поведение системы качественно определяется взаимным расположением нуль-изоклин-кривых, на к-рых производные ds1/dt и ds2/dt равны 0 (рис. 2, а). Точки пересечения нуль-изоклин соответствуют стационарным состояниям системы. Пунктиром показано положение нуль-изоклины ds1/dt=0 при бифуркации, сопровождающейся возникновением устойчивых колебаний (автоколебаний) малой амплитуды. Этим колебаниям соответствует замкнутая траектория движения системы - т. наз. предельный цикл. Сплошными линиями показаны нуль-изоклины в ситуации, далекой от бифуркации, когда единственное стационарное состояние системы (точка О на рис. 2, а) сильно неустойчиво и окружено предельным циклом ABCD. Движению системы по этому предельному циклу соответствуют автоколебания концентраций s1 и s2 с большой амплитудой (см. рис. 2, б).
421_440-8.jpg
Рис. 2. Автоколебания (устойчивые колебания) в модельной ферментативной системе: a-фазовая плоскость в координатах s1-s2 с нуль-изоклинами ds1/dt=0, ds2/dt=0; пунктиром показано положение нуль-изоклины ds1/dt=0, соответствующее колебат. бифуркации, и малый предельный цикл, окружающий потерявшее устойчивость стационарное состояние О, ABCD большой предельный цикл; б - автоколебания концентраций s1 и s2, соответствующие большому предельному циклу ABCD.

В ходе К. р. наблюдались периодич. колебания разл. формы: синусоидальные, пилообразные, прямоугольные и т.д.; модулированные, квазипериодические и стохастические. Периоды большинства К. р. лежат в диапазоне от долей секунды до десятков минут. К жидкофазным К. р. относятся, напр., диспропорционирование Н2О2 и S2O42-, окисление разл. в-в галогенкислородными соед., окисление углеводородов и сульфидов кислородом. Хорошо изучена Белоусова - Жаботинского реакция, идущая в водном р-ре, где НВrO3 при катализе ионами металлов переменной валентности окисляет разл. орг. соед., в частности малоновую к-ту. Газофазные К. р. обнаружены и исследованы при окислении паров фосфора, углеводородов, СО и др. соединений. Во всех случаях существенны как объемные стадии р-ции, так и обрыв и зарождение цепей на стенках реактора, а также ускорение р-ций за счет разогрева системы в результате экзотермич. стадий (тепловой автокатализ). Возможны чисто термокинетич. автоколебания, когда тепловой автокатализ является единств, причиной неустойчивости. Простейшая модель термокинетич. колебаний в проточном реакторе имеет вид: В0:В:Р+Q. Здесь в-во В поступает в проточный реактор идеального смешения, где происходит мономолекулярная экзотермич. р-ция распада; выделяющееся тепло отводится через стенку реактора. Кинетика этой р-ции описывается двумя дифференц. ур-ниями относительно концентрации В и т-ры Т внутри реактора:
421_440-9.jpg
где [В0] - приведенная концентрация на входе в реактор, Т0 - т-ра стенки реактора, k - коэф. скорости обновления реакц. смеси в реакторе, h - коэф. скорости теплообмена, Q - тепловой эффект р-ции, Ср - теплоемкость при постоянном давлении, r - плотность, Е и А - энергии активации и предэкспоненциальный множитель р-ции соотв., R - газовая постоянная. В этой системе саморазогрев ускоряет р-цию, что приводит к исчерпанию В в реакторе и замедлению р-ции; затем концентрация В растет вследствие его поступления в реактор и цикл повторяется. Гетерог. К. р. имеют место при окислении СО, Н2, NH3, С2Н4, СН3ОН на катализаторах платиновой группы. Часто колебания наблюдаются при растворении или осаждении металлов на границе металл - раствор. Обычно эти К. р. связаны с электрохим. р-циями образования новой фазы. На рис. 3, а-е показаны примеры различных
421_440-10.jpg
Рис. 3. Автоколебания в разл. хим. системах: а колебания концентрации I2 при разложении Н2О2 в присут. IО3; 6 колебания окислит.-восстановит. потенциала E0 р-ра при окислении S2O32- хлоритом; в колебания интенсивности I хемилюминесценции при газофазном окислении СО; г - колебания т-ры DT0 при газофазном окислении СН3СНО; д - колебания конц. О2 при окислении Н2 на Ni; е - колебания электродного потенциала E при растворении Fe в HNO3.

автоколебат. хим. систем. К. р. может протекать и в распределенной системе, где имеется диффузионная связь между отдельными элементами пространства, напр. при р-циях в тонком слое неперемешиваемой жидкости. В таких случаях возникают бегущие концентрац. волны. Колебания могут возникать при работе проточных реакторов (напр., при полимеризации этилена, окислении СО). Обычно они вредны, снижают однородность продукта, приводят к аварийным ситуациям. Однако в ряде случаев проведение р-ции в колебат. режиме может быть полезным. Напр., средняя скорость каталитич. окисления SO2 на V2O5 возрастает в колебат. режиме на 15%; в ряде процессов полимеризации в результате колебаний скорости подачи мономера снижается полидиспeрсность продукта. К. р. лежат в основе ряда важнейших биол. процессов: генерации биоритмов, мышечного сокращения и т.д. Важнейшая биол. К. р.- генерация нервных импульсов, вызываемая изменением проницаемости трансмембранных ионпроводящих каналов. Лит.: Жаботинский А. М., Концентрационные автоколебания, М., 1974; Вольтер Б. В., Сальников И. Е., Устойчивость режимов работы химических реакторов, М.. 1981; Полак Л. С., Михайлов А. С.. Самоорганизация в неравновесных физико-химических системах, М., 1983; Гарел Д., Гарел О., Колебательные химические реакции, пер. с англ., М., 1986; Колебания и бегущие волны в химических системах, под ред. Р. Дж. Филда и М. Бергера, пер. с англ., М., 1987. А. М. Жаботинский.
===
Исп. литература для статьи «КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ»: нет данных

Страница «КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учителей, учеников, студентов и просто химиков