ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по Химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.

 
Всё о Химии - Ximia.org

КУЛОНОМEТРИЯ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


КУЛОНОМEТРИЯ, электрохим метод исследования и анализа, основанный на измерении кол-ва электричества (Q), прошедшего через электролизер при электрохим. окислении или восстановлении в-ва на рабочем электроде. Согласно объединенному Фарадея закону, масса электрохимически превращенного в-ва (Р) в г связана с Q в Кл соотношением: Р=QM/Fn, где М-молекулярная или атомная масса в-ва, п- число электронов, вовлеченных в электрохим. превращение одной молекулы (атома) в-ва (М/n - электрохим. эквивалент в-ва), F - постоянная Фарадея. К.-единственный физ.-хим. метод анализа, в к-ром не требуются стандартные образцы. Различают прямую К. и кулонометрич. титрование (К. т.). В первом случае определяют электрохимически активное в-во, во втором случае - независимо от электрохим. активности определяемого в-ва в испытуемый р-р вводят электрохимически активный вспомогат. реагент, продукт электрохим. превращения к-рого (кулонометрич. титрант) с большой скоростью и количественно химически взаимодействует с определяемым в-вом. Оба варианта К. можно проводить при постоянном потенциале Е рабочего электрода (потенциостатич. режим) или при постоянном токе электролиза Iэ (гальваностатич. режим). наиб. часто используются прямая К. при постоянном Е и К.т. при постоянном Iэ. Для кулонометрич. анализа необходимо соблюдение след. условий: электрохим. превращение в-ва должно протекать со 100%-ным выходом по току (h), т.е. должны отсутствовать побочные электрохим. и хим. процессы; нужны надежные способы определения кол-ва электричества и установления момента завершения электрохим. или хим. р-ции. В прямой К. 100%-ный выход по току обеспечивается, если значение Е поддерживать постоянным в области предельного диффузионного тока Iпp на вольтамперограмме определяемого в-ва (см. Вольтамперометрия). При этом в анализируемом р-ре должны отсутствовать посторонние в-ва, способные электрохимически превращ. в тех же условиях. Кол-во электричества определяют обычно с помощью электронных интеграторов тока. Иногда пользуются менее точными приборами - кулонометрами разл. типа, а также планометрическим и расчетными методами. В последних двух случаях завершением электролиза считают момент, когда Iэ падает до значения фонового тока Iф, поэтому кол-во электричества, необходимое для завершения электродной р-ции, равно разности QобQф, где Qоб - общее кол-во электричества, Qф - кол-во электричества, измеренное в тех же условиях за то же время электролиза tэ, но в отсутствие определяемого в-ва. Если электрохим. р-ция первого порядка, то It=I0е-Kt=I0.10-Kt, К=2,30ЗК'=SD/Vd, где It и I0 - ток электролиза соответственно в момент времени т и при t=0, S - площадь пов-сти электрода, D - коэф. диффузии электрохимически активного в-ва, d - толщина диффузионного слоя, V - объем р-ра в ячейке. Продолжительность электролиза не зависит от начальной концентрации в-ва, но заметно сокращается с увеличением соотношения S/V и при интенсивном перемешивании р-ра (уменьшении 6). Можно считать электролиз завершенным, когда Iэ станет равен 0,1 I0 или 0,01 I0 (в зависимости от требуемой точности анализа). В планометрич. способе для установления Q измеряют площадь под кривой It - t, т.к. 541_560-23.jpg. В расчетном способе решают последнее ур-ние, подставляя в него выражение для It. После интегрирования получают Q=I0/К=I0/2,303K'. Для нахождения I0 и К' выражение для It логарифмируют и по нескольким (5-7) точкам строят прямую lgIt-t, тангенс угла наклона к-рой равен К', а точка пересечения с осью ординат соответствует lgI0, т.е. для определения Q нет необходимости проводить электролиз до конца и измерять I0, значение к-рого плохо воспроизводится. В др. расчетном способе Q вычисляют по ф-ле Q=[Q22-Q1Q3]/(2Q2-Q1-Q3), где Q1, Q2 и Q3 - кол-ва электричества в моменты времени t1, t2 и t3 соотв., причем (t2-t1)~(t3-t2). Прямая К. при постоянном Iэ осуществима, только когда определяемое в-во находится или предварительно выделено в виде твердой фазы на рабочем электроде. Анодное (катодное) растворение при постоянном Iэ и измерение tэ в момент резкого изменения Е позволяет рассчитать Q=Iэtэ. Преимущество прямой К. перед К.т. - высокая селективность. Однако наиб. распространенный метод кулонометрич. анализа - К. т. в гальваностатич. режиме, т. к. он отличается простотой аппаратурного оформления и более высокой точностью. Для нахождения оптим. условий проведения эксперимента вычисляют значения выхода по току по ф-ле h=(iэ-iф).100/iэ, где iэ и iф - плотности тока электролиза (т. е. отношения Iэ/S) соотв. в присут. вспомогат. реагента и без него при одних и тех же значениях Е. Варьируя т-ру, рН среды, концентрации электрохимически активного в-ва и разл. фоновых электролитов, а также значения iэ, строят графики h=f(iэ) и находят область iэ, при к-рой h~100%. Существуют и другие, реже используемые способы расчета оптим. значения iэ. Обычно вычисляют также эффективность титрования Qэ.100/Qt (%), где Q, и (Qt - соотв. эксперим. и тeорeтич. значения кол-ва электричества при К. т. известной массы определяемого в-ва. Если определяемое в-во А электрохимически активно, его предельный ток должен быть меньше тока электролиза и значительно меньше предельного тока (I'пр) вспомогат. реагента С. При этом в электролизере происходят электрохим. р-ции: A6ne:В и Сbme:D, а также хим. р-ция (окисление-восстановление, комплексообраювание, осаждение или кислотно-основное взаимод.) mA+nD:mB+nС или mА+nD:AmDn. При электролизе концентрация реагента С остается постоянной (если он регенерируется) или меняется незначительно, т.к. его концентрация в р-ре на 3-4 порядка превышает концентрацию определяемого в-ва. Т. обр., значение I'пр практически постоянно. Поэтому в-во С называют электрохим. буфером, поддерживающим постоянное значение Е. В К. т. время электролиза мало, т. к. содержание А в электролизере уменьшается одновременно вследствие электрохим. и хим. р-ций. Если А неэлектроактивно, то для выбора оптим. значения iэ предварительно определяют зависимость выхода по току в-ва D от iэ, как описано выше. Конец хим. р-ции устанавливают с помощью цветных индикаторов или физ. - хим. методами. Среди последних наиб. удобны потенциометры и амперометрия с одним или двумя поляризованными электродами (см. Амперометричeское титрование). Кол-во электричества рассчитывают по ф-ле Q=Iэtэ. Кулонометрич. титрант получают из растворимых солей, твердых электрохимически активных материалов (Ag, Hg), амальгам, электродов второго рода и из воды (при определении к-т и оснований) в присут. инертных электролитов, создающих необходимую электропроводность р-ра. Преимущества К. т. перед обычными титримeтрич. методами: нет необходимости стандартизовать р-ры титранта; титрант прибавляется очень малыми порциями (практически непрерывно); р-р не разбавляется; можно генерировать электрохимически неактивные титранты, напр. комплексон III, а также малоустойчивые сильные окислители и восстановители, в частности Mn(III), Pb(IV), Сr(П), V(II), Ti(III). Установки для кулонометрич. анализа (рис. 1,2) состоят из потенциостата или гальваностата, регистрирующего потенциометра или интегратора тока, электролизера и индикац. системы (в случае использования физ.-хим. методов для
541_560-24.jpg
Рис. 1. Схема установки для прямой кулономeтрии при постоянном E: 1 электролизер; 2 источник постоянного токa с регулируемым напряжением: 3 прибор для определения кол-ва злектричества: 4 рабочий электрод; 5 вспомогательный электрод; 6 электрод сравнения, относительно к-рого контролируют потенциал рабочего электрода: 7 устройство, измеряющее разность потенциалов.

установления конца хим. р-ции в К. т.). Приборы для К. легко автоматизируются. Электролизеры (см., напр., на рис. 2) представляют собой, как правило, стеклянные сосуды, катодные и анодные камеры в к-рых разделены диафрагмой (напр., из пористого стекла). В качестве рабочих и вспомогательных (замыкающих цепь электролиза) электродов используют благородные металлы (Pt, Au), электроды второго рода и, реже, углеродные материалы (графит, стеклоуглерод и др.). Р-р, в к-рый погружен рабочий электрод, перемешивают обычно магн. мешалкой; при необходимости эксперимент проводят в атмосфере инертного газа. К. применяют для определения как следовых, так и весьма больший кол-в в-в с высокой точностью. Погрешность прямой К. в потенциостатич. режиме обычно 0,5-1%, а К.т. в гальваностатич. режиме - 0,1-0,3%. Особенно точен дифференциальный вариант К. В этом случае в цепь последовательно включают два идентичных электролизера, в один из к-рых вносят стандартное в-во в известном кол-ве, эквивалентном кол-ву электричества Q1, к-рое на величину Q2 меньше кол-ва электричества, необходимого для завершения электрохим. или хим. р-ции определяемого в-ва во втором электролизере. Электролиз проводят в одинаковых условиях при строгом контроле значений Е и Iэ. Все погрешности сказываются только на кол-ве электричества Q2, к-рое обычно
541_560-25.jpg
Рис. 2. Схема установки для кулонометрич. титрования: 1 электролизер: 2 рабочий электрод (электрод генерации): 3 - вспомогательный электрод: 4 пористое стекло: 5 прецизионное сопротивление: 6 устройство, измеряющее разность потенциалов: 7 источник постоянного тока: 8 хронометр: 9 магнитная мешалка.

составляет 2-5% Q1. Содержание определяемого в-ва соответствует сумме Q1+Q2. Чувствительность кулонометрич. методов определяется в осн. способами установления момента завершения электрохим. или хим. р-ции и составляет 10-8-10-9 моль/л. Использование неводных и водно-орг. сред расширяет область потенциалов, в к-рой протекают электрохим. и хим. р-ции, и таким образом увеличивает круг в-в, анализируемых кулонометрически. К. применяют для анализа мн. неорг. (практически все металлы, галогены, S и др.) и орг. в-в (ароматич. амины, нитро- и нитрозоcоединения, фенолы, азокрасители, алифатич. амиды и др.); определения воды в орг. в-вах; установления толщины и анализа металлич. покрытий; изучения процессов коррозии; исследования кинетики и механизма хим. р-ций (в т.ч. каталитических); определения констант равновесия р-ций; установления числа электронов, участвующих в электрохим. и хим. взаимодействиях, и т.д. Кулонометрич. детекторы широко используются в проточно-инжeкционном анализе и хроматографии (см. Детекторы хроматографические).
===
Исп. литература для статьи «КУЛОНОМEТРИЯ»:
Зозуля А. Н.. Кулонометрический анализ, 2 изд., Л.. 1968: Агасян П. К., Хамракулов Т. К.. Кулонометрическкй метод анализа. М., 1984.
П. К, Агасян. Л. Б. Оганесян.

Страница «КУЛОНОМEТРИЯ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учителей, учеников, студентов и просто химиков