ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по Химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.

 
Всё о Химии - Ximia.org

МАГНЕТОХИМИЯ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


МАГНЕТОХИМИЯ, раздел физ. химии, изучающий зависимость между магн. св-вами в-ва и его хим. строением, а также влияние магн. поля на реакц. способность хим. соединений. Магн. св-ва большинства в-в характеризуются магн. восприимчивостью, к-рая для диа- и парамагнетиков равна отношению спонтанной намагниченности к напряженности внеш. поля и для сильномагнитных в-в зависит от напряженности поля (см. Магнитная восприимчивость. Магнитный момент). Первыми объектами М. были диамагнитные орг. в-ва. Как показал П. Паскаль, для этих соед. значения молярной магн. восприимчивости cм, усредненные по всем направлениям и отнесенные к одной молекуле, подчиняются принципу аддитивности по атомам и хим. связям, напр. cм = nAcA + l, где nА - число атомов с восприимчивостью cА, l - поправка, зависящая от природы связей между атомами. Аддитивный подход был разработан также для неорг. диамагнитных ионных кристаллов. В настоящее время развивается аддитивная схема и для анизотропии магн. восприимчивости, к-рая обладает по сравнению с усредненным значением гораздо большей чувствительностью к взаимной ориентации функц. групп, внутри- и межмол. взаимодействиям. Сравнение эксперим. значений магн. восприимчивости (или зависящих от нее св-в) с аддитивно вычисленными значениями используют для установления хим. строения молекул, изучения взаимного влияния атомов или ионов, исследования сольватации и комплексообразования, в конформац. анализе. Так, выявление аномально больших значений магн. восприимчивости, характерных только для ароматич. соед., является широко применяемым критерием ароматичности. Для парамагнитных в-в обычно сопоставляют эффективный (экспериментальный) магн. момент щфф, равный (cпара.Т)1/2 (T - абс. т-ра), с теоретич. значением, зависящим в общем случае от g-фактора и квантовых чисел молекулы, или анализируют не зависящий от т-ры парамагнетизм. Совр. М. парамагнитных частиц основывается на трудах X. Бете (1929) и Дж. Ван Флека (1933), приведших к созданию кристаллического поля теории и поля лигандов теории. Согласно этим представлениям, парамагнетизм молекул, напр. координационных соед., определяется числом неспаренных электронов, симметрией и силой кристаллич. поля (поля лигандов). По величине mэфф и его температурной зависимости можно судить о степени окисления металла, природе внутрикомплексных и межионных взаимод., пространств. структуре и симметрии координац. сферы. Так, магн. моменты ионов РЗЭ практически не зависят от окружения, поскольку поле лигандов слабо влияет на магн. момент, определяемый внутр. 4f-электронами. Иная картина наблюдается для ряда 3d-ионов переходных металлов, для к-рых mэфф редко достигает суммы спинового и орбитального магн. моментов вследствие того, что орбитальный магн. момент иона полностью или частично подавляется кристаллич. полем. В нек-рых ионах, напр. СrO42-, при отсутствии неспаренных электронов преобладает парамагнетизм, к-рый не зависит от т-ры. Он обусловлен тем, что волновая ф-ция основного состояния иона в магн. поле включает слагаемые, отвечающие более высоким по энергии и обладающим магн. моментом возбужденным состояниям этого иона в отсутствие поля. В молекулах, содержащих более одного парамагнитного иона (типа кластеров), отклонения mэфф от значений, ожидаемых для многоядерных соед., и вид температурной зависимости mэфф указывают, как правило, на проявление обменных взаимод. ферро- или антиферромагнитного типа между парамагнитными ионами. Из-за этого, напр., димер Сu2(ОСОСН3)4.2О при низких т-рах диамагнитен, а выше комнатной парамагнитен. Возможны и косвенные межмол. обменные взаимодействия. Так, mэфф Os(IV) в кристаллич. K2OsCl6 равен 1,44 магнетона Бора, а в р-ре из-за уменьшения антиферромагнитного обменного взаимод. между ионами Os(IV) mэфф возрастает до 1,94 магнетона Бора. Магн. св-ва комплексов часто определяются симметрией координац. сферы; так, квадратные комплексы Ni(II) диамагнитны, а тетраэдрические парамагнитны. Благодаря тому что парамагнитная восприимчивость значительно превосходит диамагнитную, методы М. используются также для обнаружения следов ферромагнитных примесей, недоступных для определения др. методами. В рамках магнетохим. подхода нек-рые хим. и биохим. процессы объясняются изменением числа неспаренных электронов. Перспективными направлениями М. являются исследования непосредств. влияния магн. поля на смещение хим. равновесия, кинетику и механизм хим. р-ций, в т. ч. гетерогенных (см. Ионы в газах, Магнитно-спиновые эффекты). К М. примыкают исследования магн. резонанса (ЯМР, ЭПР и др.), направленные на выявления связи между магн. св-вами и хим. строением молекул.
===
Исп. литература для статьи «МАГНЕТОХИМИЯ»:
Калинников В. Т., Ракитин Ю. А., Введение в магнетохимию, М., 1980; Зеленцов В. В., Богданов А. П., Магнетохимия координационных соединений, М., 1982 (ротапринт); Карлин Р., Магнетохимия., пер. с англ., М., 1989; Вульфсон С. Г., "Успехи химии", т. 47, 1988, № 10, с. 1622-42.
С. Г. Вульфсон. В. В. Зеленцов.

Страница «МАГНЕТОХИМИЯ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учителей, учеников, студентов и просто химиков