ximia.org - сайт о химии для химиков
РАЗДЕЛЫ САЙТА
Разная химия
Неорганическая
Органическая
Биологическая
Наглядная биохимия
Токсикологическая

База знаний
Химическая энциклопедия
Справочник по веществам
Таблица Д.И. Менделеева
Гетероциклические соед.
Теплотехника
Углеводы

Партнёры по Химии
Всё об Алхимии

Химия в жизни
Каталог предприятий

Дополнительно
Лекарственные средства Фармацевтический справ.

 
Всё о Химии - Ximia.org

ГАЛОГЕНИДЫ


Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


ГАЛОГЕНИДЫ, хим. соед. галогенов с др. элементами. К Г. обычно относят соед., в к-рых атомы галогена имеют большую электроотрицательность, чем др. элемент. Г. не образуют Не, Ne и Аг. К простым, или бинарным, галогенидам ЭХn (n-чаще всего целое число от 1 у моногалогенидов до 7 у IF7 и ReF7, но м. б. и дробным, напр. 7/6 у Bi6Cl7) относят, в частности, соли галогеноводородных к-т и межгалогенные соединения (напр., галогенфториды). Существуют также смешанные Г., полигалогениды, гидрогалогениды, оксогалогениды, оксигалогениды, гидроксогалогениды, тиогалогениды и комплексные Г.

Степень окисления галогенов в Г. обычно равна — 1, в межгалогенных соед. у СЦ Вг, I она может быть + 1, 4- 3, + 5, а у I в IF7 +7.

По характеру связи элемент-галоген простые Г. подразделяют на ионные и ковалентные. В действительности связи имеют смешанный характер с преобладанием вклада той или иной составляющей. Г. щелочных и щел.-зем. металлов, а также многие моно- и дигалогениды др. металлов-типичные соли, в к-рых преобладает ионный характер связи. Большинство из них относительно тугоплавки и малолетучи, хорошо растворимы в воде; в водных р-рах почти полностью диссоциируют на ионы. Св-вами солей обладают также тригалогениды Р3Э. Р-римость в воде ионных Г., как правило, уменьшается от иодидов к фторидам. Хлориды, бромиды и иодиды Ag+ , Сu+, Hg+ и Pb+ плохо растворимы в воде.

Увеличение числа атомов галогенов в Г. металлов или отношения заряда металла к радиусу его иона приводит к повышению ковалентной составляющей связи, снижению р-римости в воде и термич. устойчивости Г., увеличению его летучести, повышению окислит. способности и склонности к гидролизу. Эти зависимости наблюдаются для Г. металлов одного и того же периода и в ряду Г. одного и того же металла. Их легко проследить на примере термич. св-в. Напр., для Г. металлов 4-го периода т-ры плавления и кипения составляют соотв. 771 и 1430°С для КС1, 772 и 1960°С для СаС12, 967 и 975 °С для ScCK, - 24,1 и 136°С для Т1С14. Для UF3 т. пл. ~ 1500°С, UF4 1036 °С, UF5 348 °С, UF6 64,0 °С В рядах соед. ЭХn при неизменном п ковалентность связи обычно увеличивается при переходе от фторидов к хлоридам и уменьшается при переходе от последних к бромидам и иодидам. Так, для A1F3 т. возг. 1280°С, А1С13 180°С, т. кип. А1Вг3 254,8 °С, АlI3 407 °С. В ряду ZrF4, ZrCl4, ZrBr4, ZrI4 т-ра возгонки равна соотв. 906, 334, 355 и 418°С. В рядах MF,, и МС1„, где М-металл одной подгруппы, ковалентность связи уменьшается с ростом атомной массы металла. Фторидов и хлоридов металлов с примерно одинаковым вкладом ионной и ковалентной составляющей связи немного.

Г. неметаллов более ковалентны, чем Г. металлов. Так, т-ры возгонки SiF4 ( - 95 °C и GeF4 ( - 36 °C гораздо ниже, чем у TiF4 и ZrF4, также и т-ры кипения SiCl4 (57,0 °С) и GeCl4(83,12°C) ниже, чем у Т1С14 и ZrCl4. Ковалентные SiF4 и GeF4, в отличие от TiF4 и ZrF4, почти мгновенно гидролизуются водой.

Средняя энергия связи элемент - галоген уменьшается при переходе от фторидов к иодидам и с повышением п (см. табл.).

ЭНЕРГИЯ СВЯЗИ В НЕКОТОРЫХ ГАЗООБРАЗНЫХ ГАЛОГЕНИДАХ, кДж/моль
1095-38.jpg

К смешанным Г., содержащим наряду с атомами к.-л. элемента атомы двух или большего числа галогенов, относятся, напр., хлоропентафторид серы SC1F5, бромохлороди-фторид углерода CBrClF2, к межгалогенным соед. ХХn' (п = = 1, 3, 5 или 7)-ClF, BrF3, BrF5, IF7 и др. Полигалогениды содержат анионы Хn- (X == Вг, I; п = 3, 5, 9), напр. КВr3, К19. Гидрогалогениды МНn Хn+1 , или МНn Хn+2 - продукты присоединения галогеноводородов к Г. металлов; содержат ионы HnX-n+1. Наиболее устойчивы гидрофториды металлов.

Многие металлы и неметаллы образуют Г., содержащие изолированные или мостиковые атомы О (соотв. оксо-и оксигалогениды), напр. оксотрифторид ванадия VOF3, диоксифторид ниобия NbO2F, диоксодииодид вольфрама WO2I2, карбонилгалогениды СОХ2, нитрилгалогениды NO2X, нитрозилгалогениды NOX, тионилгалогениды SOX2. Характер связей элементов с галогенами в окси-и оксогалогенидах неметаллов более ковалентный, чем в соответствующих соед. металлов.

Комплексные Г. (галогенометаллаты) содержат комплексные анионы, в к-рых атомы галогенов являются лигандами, напр. гексахлороплатинат(IV) калия K2[PtCl6], гептафторотанталат(V) натрия Na[TaF7], гексафтороарсенат(V) лития Li[AsF6]. наиб. термич. устойчивостью обладают фторо-, оксофторо- и хлорометаллаты. По характеру связей к комплексным Г. близки ионные соед. с катионами NF4+, N2F3+, C1F2+, XeF+ и др.

Для многих Г. характерны ассоциация и полимеризация в жидкой и газовой фазах с образованием мостиковых связей. наиб. склонны к этому Г. металлов I и II групп, А1С13, пентафториды Sb и переходных металлов, оксофториды состава MOF4. Известны Г. со связью металл - металл, напр. Hg2Cl2.

Фториды значительно отличаются по св-вам от др. Г. Однако в простых Г. эти отличия выражены менее резко, чем в самих галогенах, а в комплексных Г.-слабее, чем в простых.

Многие ковалентные Г. (особенно фториды)-сильные к-ты Льюиса, напр. AsF5, SbF5, BF3, A1C13. Фториды входят в состав сверхкислот. Высшие Г. восстанавливаются металлами и Н2, напр.:
1095-39.jpg

Г. металлов V-VIII групп, кроме Сr и Мn, восстанавливаются Н2 до металлов, напр.:

WF6 + 3Н2 -> W + 6HF

Многие ковалентные и ионные галогениды металлов взаимодействуют между собой с образованием комплексных Г., напр.:

КС1 + ТаС15 -> К[ТаС16]

Более легкие галогены могут вытеснять более тяжелые из Г. Кислород может окислять Г. с выделением С12, Вr2 и I2. Одна из характерных р-ций ковалентных Г.-взаимод. с водой (гидролиз) или ее парами при нагр. (пирогидролиз), приводящее к образованию оксидов, окси- или оксогалогенидов, гидроксидов и галогеноводородов. Исключение составляют CF4, CC14 и SF6, устойчивые к парам воды при высоких т-рах.

Г. получают непосредственно из элементов, взаимод. галогеноводородов или галогеноводородных к-т с элементами, оксидами, гидроксидами или солями, а также обменными р-циями.

Г. широко используют в технике как исходные в-ва для получения галогенов, щелочных и щел.-зем. металлов, как компоненты стекол и др. неорг. материалов; они являются промежут. продуктами в произ-ве редких и нек-рых цветных металлов, U, Si, Ge и др.

В природе Г. образуют отдельные классы минералов, в к-рых представлены фториды (напр., минералы флюорит, криолит) и хлориды (сильвин, карналлит). Бром и иод входят в состав нек-рых минералов в виде изоморфных примесей. Значительные кол-ва Г. содержатся в воде морей и океанов, в соляных и подземных рассолах. Некоторые Г., напр. NaCl, К.С1, СаС12, входят в состав живых организмов.

О псевдогалогенидах см., напр., Галогены, об орг. Г.-Галогенангидриды карбоновых кислот, Галогензамещенные углеводородов. Э.Г. Раков.
===
Исп. литература для статьи «ГАЛОГЕНИДЫ»: нет данных

Страница «ГАЛОГЕНИДЫ» подготовлена по материалам химической энциклопедии.

 

Всё о Химии для учителей, учеников, студентов и просто химиков